CHAPTER 4.6

Partition Curves

Brian Flintoff

The partition curve (also known as a Tromp curve, selectivity
curve, efficiency curve, classification curve, or performance
curve) is a standard and very useful way to empirically model
physical separation systems. This includes separations based
on particle size (screens, hydrocyclones, spiral or screw and
rake classifiers, air classifiers, deslimers, etc.), particle density
(dense medium vessels or cyclones, etc.), particle magnetic
properties (magnetic separators), and particle electrostatic
properties (electrostatic separators). The partition curve pro-
vides an empirically derived description of the separation
process within a given system with respect to a specific feed
property, such as particle size.

The emergence of multiphysics modeling and simula-
tion tools (e.g., two-way coupled discrete element method and
computational fluid dynamics) are leading to more fundamen-
tal descriptions based on first principles of the phenomena
underpinning the partition curve in these various separa-
tors. Nevertheless, the empirical approach will remain as a
core tool (1) in process analysis for plant engineers, (2) as an
important decision-support tool in process design, and (3) as a
key element of most process simulation software.

This chapter provides a relatively in-depth review of the
partition curve including details on the data analysis steps.
Since the hydrocyclone has a very rich history of study,
and because it can exhibit some “unusual” analytical chal-
lenges, it will be used as the basis for the descriptive material
that follows.

DATA ACQUISITION, SCREENING,

AND MASS BALANCES

The construction of a partition curve from plant data requires
that a sampling campaign (also known as a survey) be com-
pleted. The details around the design of experiments, the
identification of good sampling points, the design of proper
sample cutters, and the estimation of required sample weights,
number of cuts and timing, and so on, are beyond the scope
of this discussion. (For more information on these topics, the
reader is referred to sources such as Wills and Finch 2016,
or, where available, The SPOC Manual by Canada Centre for
Mineral and Energy Technology [Laguitton 1985]). Suffice to

Note: Uppercase is mass flow; lowercase is mass frequency on size.

Figure 1 Sampling experiment in a semiautogenous and ball
mill circuit

say that, following these principles, two steady-state sampling
campaigns were completed, as illustrated in Figure 1.

The grinding circuit in Figure 1 treats a low-grade cop-
per ore with minimal gangue sulfides; that is, it is a relatively
homogeneous rock displaying the physical properties of the
predominant siliceous gangue. The two campaigns corre-
sponded to plant operation treating both a soft (supergene) ore
and a hard (hypogene) ore, and these designations are retained
through this chapter. The raw data are presented in Tables 1
and 2.

Notice that a characteristic (geomean, or geometric
mean) size has been assigned to the pan fraction, as indicated
in boldface in these tables. This is derived by simply assign-
ing a size of 5,_,/3 to the pan fraction, where s,,_, is the finest
sieve aperture (often 400 mesh or 37 um). This approxima-
tion, which is explained later, generally gives acceptable
results when the partition curve is very well defined by the
data, and it expedites the data processing step. However, there
is an alternative approach for the pan fraction, which is dis-
cussed in the “Challenges with Very Fine Separations™ section
later in this chapter. In addition, to calculate the geomean size
for the coarsest size class, it has been assumed that the upper
limiting size (sp) is 12,500 pm. Since in well-designed experi-
ments the partition factor is always 1.0 in this size range, this
assumption or calculation is not very important.
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Table 1 Soft ore sampling data

Screen Undersize Ball Mill Discharge Cyclone Feed Cyclone Overflow Cyclone Underflow
Stream (V) (B) X) (O) V)
Mass Flow, t/h 1,298.00
% Solids 75.0 73.6 61.1 41.3 74.4
Passing Size, Geomean Size, Frequency, Frequency, Frequency, Frequency, Frequency,
pm pm % retained % retained % retained % retained % retained
9.525 10,911.6 0.95 212 1.71 0.00 6.84
6,700 7.,988.6 3.37 2.67 4.56 0.00 532
4,750 5,641.4 3.03 2.82 4.96 0.00 4.32
3,350 3,989.0 4.30 3.09 4.95 0.00 4.19
2,360 2,811.8 4.16 3.15 4.53 0.03 4.40
1,700 2,003.0 3:55 2.27 2.59 0.12 3.41
1,180 1,416.3 4.95 3.75 4.20 0.18 5.38
850 1,001.5 4.23 3.96 4.16 0.15 552
600 714.1 5.24 6.77 6.58 0.24 8.45
425 505.0 5.65 10.48 9.36 0.70 11.88
300 357.1 5.96 11.81 10.46 4.12 12.06
212 2522 723 9.28 8.83 9.10 8.67
150 178.3 6.24 7.16 6.85 10.45 4.43
105 125.5 6.64 5.91 5.33 10.85 3.73
74 88.1 3.97 3.26 2.62 8.68 1.83
53 62.6 4.00 2.59 2.19 7.12 1.70
38 44.9 2.54 1.91 1.47 577 0.92
Pan 12.3 23.99 17.00 14.65 42.49 6.95
Checks 100.00 100.00 100.00 100.00 100.00
Table 2 Hard ore sampling data
Screen Undersize Ball Mill Discharge Cyclone Feed Cyclone Overflow Cyclone Underflow
Stream (V) (B) (X) (0] (U)
Mass Flow, t/h 738.00
% Solids 39:5 67.0 52.1 29.6 72.1
Passing Size, Geomean Size, Frequency, Frequency, Frequency, Frequency, Frequency,
pm pm % retained % retained % retained % retained % retained
9,525 10,911.6 5.20 0.79 1.97 0.00 1.67
6,700 7,988.6 5.91 1.08 2.28 0.00 3.72
4,750 5,641.4 578 1.64 2.47 0.00 2.97
3,350 3,989.0 6.74 1.48 2.73 0.00 3.16
2,360 2,811.8 6.80 1.67 2.61 0.00 3.1
1,700 2,003.0 3.11 1.63 2.76 0.00 3.15
1,180 1,416.3 5.18 2.43 3.46 0.00 4.56
850 1,001.5 4.10 2.51 3.14 0.00 4.06
600 714.1 4.88 3.98 4.26 0.19 5.98
425 505.0 522 6.39 5.88 0.14 8.52
300 357.1 5.08 10.33 8.58 0.46 12.29
212 252.2 5.13 17.57 13.75 3.24 15.99
150 178.3 5325 10.81 9.16 11.96 10.61
105 125.5 4.86 9.32 7.97 13.78 6.22
74 88.1 2.72 4.92 4.43 8.68 3.31
53 62.6 2.31 4.43 4.08 717 1.86
38 44.9 1.79 2.40 2.31 5.40 1.09
Pan 12.3 19.94 16.62 18.16 48.98 7.73
Checks 100.00 100.00 100.00 100.00 100.00
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Figure 2 Soft ore and hard ore data—rudimentary mass balance information

Parameter estimation from mass balanced (or massaged)
data tends to give better estimates (i.e., minimum variance)
than simply using the raw data (Wiegel 1979; Hodouin et al.
1984). Consequently, many operations routinely use the mate-
rial balance software available in simulation packages (e.g.,
JKSimMet or USIM PAC) or stand-alone balancing packages
(e.g., Algosys Bilmat or Metso MetTools) to process the sam-
ple data. In the absence of this kind of software, another less
rigorous (and less accurate) method can be used. The authors
frequently recommend that this step be conducted in any
event, as it gives a good indication of the quality of the data—
the so-called data screening step. No mass balance package
can “clean” a highly corrupt sample data set—the garbage in,
garbage out principle. In such cases, it is usually best to redo
the experiment rather than waste a lot of time in data process-
ing and ultimately produce questionable results.

Using the symbology of Figure 1, the basic equation for
the experimental partition factor is given in Equation 1. A plot
of p; versus the characteristic size yields the partition curve:

where

p, = partition factor for size class ¢ (the fraction of the
feed material in this size class that reports to the
underflow or coarse stream)

U = mass flow of solids to the underflow or coarse
stream

u; = mass frequency in size class i in the underflow or
coarse stream

X =mass flow of solids in the hydrocyclone feed
stream

x; = mass frequency in size class / in the feed stream

(EQ1)

For data screening or to estimate a more rudimen-
tary mass balance (e.g., to deduce the mass split, U/X, in
Equation 1), the approach is to develop the basic steady-state
mass balance equations for the flow sheet in Figure 1. Since
we cannot accommodate “redundant” data, two options are

available that relate to the hydrocyclone partition curve. One
involves three streams (X, U/, and O) and the other involves
four streams (F, B, U, and 0), and these are treated separately
in the following equations.

Three-stream balance:

X=U+0O (EQ2)

Xxi = Uni+ Oo; (EQ 3)
therefore,

(0i-xi) =5 (xi - i) (EQ4)
Four-stream balance:

F+B=U+Oand F=0and B=U (EQ5)

Ffi+ Bbi = Uui+ Oo; (EQ 6)
therefore,

(0i=) =G (bi=ui) (EQ7)

where

O = mass flow of solids in the overflow or fine stream

0; = mass frequency in size class i in the overflow or
fine stream

F = mass flow of solids in the screen undersize or
fresh feed stream

J;=mass frequency in size class 7 in the [resh feed
stream

B = mass flow of solids in the ball mill discharge
stream

b; = mass frequency in size class 7 in the ball mill
discharge stream

Plots of Equations 4 and 7 will give a good visualization
of the data quality as well as an estimate of the recirculating
load (RCL = U/O). Figure 2 shows the results for the data in
Tables 1 and 2, and the RCL is reported as both fractional and
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Figure 3 Partition curve results from the rudimentary mass balances for soft and hard ores
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To complete this discussion, the partition factors can be 10 100 1,000 10,000
calculated using the (fractional) estimates of the recirculating Geomean Size, pm
load value according to Equation 8 and are shown in Figure 3.

It is generally good practice to use the underflow and overflow
streams for these calculations, as they afford a better definition
of the partition curve in the coarse and fine size ranges.

(RCL )(11;)
Pi = TRCLY(un) +(1)(0) wH
The parameter Rf, shown as the horizontal lines in
Figure 3, is discussed later in this chapter, but it is the mass
recovery of water from the hydrocyclone feed stream to the
underflow stream, or

(RCL)('O%.-l)
o= (RCL)(‘O%.- [)+(1)(10%_ 1)
where

' = % solids in the underflow stream
o’ = % solids in the overflow stream

(EQY)

For a homogeneous ore in a typical grinding circuit appli-
cation, the partition factor in the very fine sizes should be
quite comparable to Rf (i.e., the fine particles behave as part of
the fluid). From Figure 3, it is again clear that the hard ore data
conform better to this expectation than do the soft ore data.

A detailed discussion on the mechanics of mass bal-
ance solutions is beyond the scope of this chapter. (The
interested reader could refer to some of the foundational
works [e.g., Mular 1979 or Hodouin et al. 1981].) Suffice
to say that the adjusted data satisfy all of the mass balance

Figure 4 Partition curves for mass balanced data for soft and
hard ores

equations (e.g., Equations 2, 3, 5, and 6) and in such a way
that the adjustments on all measured data are minimized,
in the weighted least-squares sense. Tables 3 and 4 present
the mass balance results for the raw data in Tables 1 and 2,
respectively. The partition curves for the mass balanced data
are shown in Figure 4.

To conclude this section, Figure 5 compares the partition
curves from the rudimentary data to those from the mass bal-
anced data. It is clear that for the soft ore (the more prob-
lematic data set), significant adjustments in the raw data were
made, and even in this case there are still inconsistencies.
However, for the hard ore (the better-quality data set), there is
generally good agreement between the rudimentary and mass
balanced data. This demonstrates the importance of good data
screening, followed by mass balancing, to fully understand the
quality of the resulting partition curve analysis.

Since the remaining analysis in this chapter utilizes the
mass balanced data, henceforth the output from the mass bal-
ancing exercise is referred to as simply the experimental data.

PARTITION CURVE MODELING AND CURVE FITTING

The preceding partition curve data are interesting in the sense
that one can qualitatively assess performance based on factors
such as the amount of fine material bypassed to the underflow
stream (Rf'), the sharpness of the separation (e.g., the steepest
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Table 3 Mass balance results for soft ore

Screen Undersize Ball Mill Discharge Cyclone Feed Cyclone Overflow Cyclone Underflow
Stream L) (B) (X) (O) (U)
Mass Flow, t/h 1,298.00 4,022.39 5,320.39 1,298.00 4,022.39
% Solids 75.0 73.7 61.8 41.1 73.7
Passing Size, Geomean Size, Frequency, Frequency, Frequency, Frequency, Frequency,
pm pm % retained % retained % retained % retained % retained
9,525 10,911.6 0.96 2.29 1.97 - 2.60
6,700 7,988.6 370 3.29 3.39 - 4.48
4,750 5,641.4 3.23 3.32 3.30 - 4.36
3,350 3,989.0 4.46 332 3.60 - 4.76
2,360 2,811.8 4.33 3.41 3.64 0.03 4.80
1,700 2,003.0 3.60 2.31 2.63 0.12 3.43
1,180 1,416.3 5.06 3.91 4.19 0.18 5.48
850 1,001.5 4.32 4.16 4.20 0.15 5.51
600 714.1 5.34 703 6.69 0.24 8.77
425 505.0 574 11.05 975 0.70 12.67
300 357.1 6.05 12.43 10.87 4.09 13.06
212 252:2 737 .68 .12 8.95 Q17
150 178.3 6.15 6.62 6.50 11.09 5.02
105 1285 6.50 5.44 5.70 11.05 3.97
74 88.1 3.86 3.00 3.21 7.75 1.74
53 62.6 3.85 237 273 6.28 1.59¢
38 44.9 2.42 1.69 1.87 496 0.87
Pan 12.3 23.07 14.58 16.65 44.40 7.70
Checks 100.00 100.00 100.00 100.00 100.00

Table 4 Mass balance results for hard ore

Screen Undersize Ball Mill Discharge Cyclone Feed Cyclone Overflow Cyclone Underflow
Stream (U) (B) {X) (O) (U)
Mass Flow, t/h 738.00 2,355.85 3,093.85 738.00 2,355.85
% Solids 59.5 69.2 52.4 29.5 69.2
Passing Size, Geomean Size, Frequency, Frequency, Frequency, Frequency, Frequency,
pm pm % retained % retained % retained % retained % retained
9,525 10,911.6 4.45 0.73 1.62 - 2.13
6,700 7,988.6 6.34 1.12 2.37 — 3.1
4,750 5641.4 5.48 1.55 2.49 - 3.27
3,350 3,989.0 6.51 1.44 2.65 - 3.48
2,360 2,811.8 6.23 1.55 2.67 — 3150
1,700 2,003.0 3.37 1.85 2.21 - 2.91
1,180 1,416.3 5.44 2.60 3.28 - 4.30
850 1,001.5 4.22 2.64 3.01 — 3.96
600 7141 4.98 4.14 4.34 0.19 5.64
425 505.0 5.27 6.49 6.20 0.14 8.10
300 357.1 511 10.41 15 0.46 11.87
212 252.2 5.14 16.78 14.00 3.24 17.37
150 178.3 5.33 11.46 9.99 11.34 9.57
105 125.5 4.87 9.15 8.13 13.74 6.37
74 88.1 2.74 5.05 4.50 8.47 3.26
53 62.6 2.27 3.87 3.49 8.05 2.06
38 44.9 1.78 2.33 2.20 5.64 1.13
Pan 12.3 20.46 16.83 17.70 48.73 7.98
Checks 100.00 100.00 100.00 100.00 100.00
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Figure 6 Conceptual models for classification in a hydrocyclone

slope of the partition curve), and effective separation or cut
size (e.g., the size at which a particle has a 50% probability
of reporting to the underflow stream). Quantitatively, math-
ematical models are a useful vehicle for data reduction, as the
model parameters can provide direct measures of the perfor-
mance metrics.

Usually there is some conceptual or phenomenological
notion(s) that underpins the form of a mathematical model. In
the case of the partition curve for a hydrocyclone, the two con-
ceptual models that have been cited are illustrated in Figure 6.
Here, a fraction (Rf) of the feed solids (pre-classification)
or the overflow solids (post-classification) is bypassed to the
underflow stream.

To briefly digress, the preceding conceptual models do
not account for another mechanism that is sometimes seen in
cyclone performance—the short-circuiting of coarse mate-
rial across the upper regions of the inlet and into the overflow
stream. This mechanism was more common with older cyclone
inlet designs and in cases involving vortex finder wear/length
issues. The experimental partition curve can give an indica-
tion that this may be a performance issue, for example, if the
partition factors in the coarser size ranges do not approach

the value of 1.0 as quickly as might be expected in this size
range (e.g., an apparent offset). Normally this is not an impor-
tant factor, at least from a partition modeling perspective.
However, original equipment manufacturers have noted that
new inlet designs effectively eliminate this problem.

Regardless of the way one chooses to think about it, the
mass balance calculations in Figure 6 show that the general
form of the hydrocyclone partition curve model is

pi =Rf+(1-Rf)ci

where
pi = predicted partition factor value from the model
Rf= mass fraction of water in the feed stream that
reports to the underflow stream
¢; = “corrected” classification partition factor value
(i.e., corrected for the bypass, Rf)

(EQ 10)

As the preceding partition curve figures show, the curve
looks sigmoidal in nature, so it is no surprise that quite a num-
ber of functional forms have been used to describe ¢;. A few of
these are summarized in Equations 11 through 16, but the two
most common forms are the Rosin—Rammler function used
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by Plitt (Equation 11—see Plitt 1971; the equation below is
shown in a slightly different form than that of Plitt) and the
exponential sum function used by Lynch—Rao (Equation 12—
see Lynch and Rao 1975). Equations 13 and 14 are variations
on the logistic function, which has been used in electrostatic
separation (Wei and Realff 2005), Equation 15 is the log nor-
mal function, and Equation 16 is an arctangent function that
has been used for coal partition curves (De Lange and Venter
1987).

1—0.5%s0e)

¢ = (EQ 11)

= (o] % s0e))- !

o exp(a[%socl)+ exp (a)-2 et
: (EQ 13)

Ci - g | AR
1*(%5%)

1 (EQ 14)

“ T T+ exp(-a(di- d50c))
¢i =05+0.5 ERF( 7 Tl
for d; > d50c
¢ =05- O.SlERF(-“n—{CﬁM)]
V2 In(a) (EQ 15)
for di = d50c
(EQ 16)

[

5 O.S(arctan [ot(dﬁ— d50c) + %)J)

where
d; = characteristic size of size class i (defined in the
following paragraph)
d50c¢ = corrected cut size parameter (i.e., the size at which
¢;=0.5)
o = sharpness-of-separation parameter in most of the
preceding cases
ERF = Excel error function

Just as many models are used to describe c¢,, there are
different ways to define the average (e.g., mass mean) or char-
acteristic size of a size class. The convention is to number the
size classes from the coarsest (i = 1) to the finest (i = n), and
Equations 17 through 19 define the three most common char-
acteristic sizes: geomean, arithmetic mean, and bottom size
(or top size), respectively. The most commonly encountered is
the geomean size, which is what has been used in this chapter.

di =vsi-158i (EQ 17)
g — it ¥ 12+ i) (EQ 18)
di =s; (EQ 19)
where
s; = lower size limit for size class i (s,_; is the upper
limit)

Common practice is to employ a v2 series (ie.,s; | =
V2 s;) for selecting the sieve sizes, as was the case for the
preceding soft and hard ore data. An approximation, such as

dpan = 5,_1/3 18 used for the pan fraction.

Table 5 Model fits for the hard ore data

Model for ¢; RSS a d50c Rf
Equation 11 5.73E-03 1.84 144 0.35
Equation 12 5.50E-03 227 143 0.33
Equation 13 1.15E-02 2.78 142 0.37
Equation 14 5.50E-03 0.02 129 0.25
Equation 15 1.08E-02 1.85 141 0.37
Equation 16 1.62E-02 0.02 133 0.27

Fitting the model (Equation 10) to the raw or balanced
data is a nonlinear least-squares problem—ypick the param-
eters that minimize RSS below—that can be achieved using
tools like Solver in Excel. The general weighted least-squares
objective function is given by the following equation:

n
RSS = Y wi[pi-pif

i=1

(EQ 20)

where
RSS = residual sum of squares (unexplained variation in
the experimental p; data)
w; = weighting factor for size class i (generally an
unweighted RSS is used where all w; = 1)

Equation 10 can represent a two-parameter (o, d50c¢) or
three-parameter (., d50c, Rf) estimation problem, although if
the raw data are truly coherent, the two-parameter model is
usually selected and Rf is computed from the mass balance
results for water. (In this context, coherent means the degree
to which the raw data satisfy the mass balance equations. For
example, from Figure 2, the hard ore data are more coher-
ent than the soft ore data. Mass balancing renders all the data
coherent.) Nevertheless, it is often instructive to fit both forms
of the model and then test to see if there is a statistically sig-
nificant difference in the goodness of fit.

Table 5 presents the fits of the wvarious three-
parameter models to the hard ore data. All of the models do
a reasonable job of describing the partition curve from the
hard ore experimental data. However, only a couple of them
provide reasonable agreement with the experimental Rf value
and demonstrate the best fits. Specifically, these are the Plitt
(Equation 11) or the Lynch—Rao (Equation 12) expressions for
¢;, which are then used in Equation 10. For these two equa-
tions, the d50c¢ value is very similar, but the o values differ.
This difference in the sharpness of separation is consistent
for these two models (i.e., the Equation 12 o value is always
slightly higher). That is to say, the a’s cannot be compared
between these two models, so once a functional form for ¢;
has been chosen, it is best to keep with it. In this chapter, the
author uses Equation 11 for ¢;, giving Equation 21 as the final
partition curve model:

b =+ (1-RP)| 1050 | (EQ21)

Figure 7 shows the fits of the model in Equation 21 to the
experimental partition curve data from the mass balances in
Tables 3 and 4. Generally, the goodness of fit is reasonable in
both cases, but for the soft ore there is a significant discrep-
ancy in the experimental R/ (from the water balance—0.435)
and model Rf (from the size data—0.352) values. As a side
note, in the case where the percentage of solids data is not
available, or is not used in the mass balance (e.g., obviously

Copyright © 2019 Society for Mining, Metallurgy, and Exploration. All rights reserved.



646 SME Mineral Processing and Extractive Metallurgy Handbook

1.0 r
Rf=0.352
g | =189
_ d50c =210 pm
8
B 0.6
c Rf (experimental)
108 leeansssnsneranens MM agil nesronennansasaniboni nesnasnsansuarbsensassiganansnss
£ 044 S
&
0.2 1
0.0 T T
10 100 1,000 10,000
Geomean Size, pm
Soft Ore

1.0 -
Rf=0.349

08 «=1.84
_ d50c = 144 pm
<}
8 0.6
c
2
E 044,
<
o Rf (experimental)

0.2 1

0.0 T T

10 100 1,000 10,000
Geomean Size, pm
Hard Ore

Figure 7 Partition curve model fits for soft and hard ores using experimental data

corrupt measurements), then Rf must be estimated from the
particle size data.

Turning briefly to the statistical comparison of two-
versus three-parameter models, one can apply the Partial F
test. In general, the Partial F test compares calculated and
tabulated F statistics to deduce whether estimating additional
parameters in a model is statistically justified. Equations 22
and 23 show the two F statistics:

Fuabutaed = F(0.05,ka = ki,n—ka) (EQ 22)
RSS(k1) - RSS(k2)
ka—k
Fealeulated = L\SZS(.ICS (EQ 23)
(n-k2)
where

k| = number of parameters in the most parsimonious
model (here, k; = 2)

k> = number of parameters in the “new” model
(here, ky =3)

n = number of data points to be fit (here, n = 18)

In the case of the hard ore, the unweighted residual sum
of squares values are RSS(2) = 6.34 x 1073 and RSS(3) =5.73
x 1073, Applying the preceding equations, F_,j.uated = 1.58
and Fpulated = 4-54, and since the latter is greater than the for-
mer, there is no statistical justification for estimating Rf from
the size data over simply using the experimental value for the
hard ore data. That is the expected outcome when the raw data
are coherent.

However, for the soft ore, the situation is reversed,
with RSS(2) = 1.97 x 1072 and RSS(3) = 4.79 x 1073, giving
Fatculated = 46.8 and Fi puiaeq = 4-54. In this case, the estima-
tion of the Rf parameter leads to a statistically superior fit.
Such an outcome requires additional investigative work to
determine if the data set can be used or whether the experi-
ment must be repeated. As an example, it is sometimes the case
that in sampling a hydrocyclone underflow stream, the cutter
overfills and fine material is washed out—that is, the sample
is biased coarse. This could be one reason that the partition
curve model estimate of Rf is lower than the experimental
value from the water balance. However, one might also expect
the underflow sample % solids to also be biased high in this
case, which would likely serve to reduce the experimental Rf

Table 6 Parameter standard error estimates

Coefficient of

Parameter Value Standard Error Variation, %
Rf 0.349 0.018 5.2
o 1.84 0.164 8.9
d50c¢ 144 5.950 4.1
RSS 5.73E-03 — -
Table 7 Parameter correlation
Rf o d50¢
Rf 1 0.71 0.77
o 0.71 1 0.61
d50c 0.77 0.61 1

value. It is a complex forensic problem, and anecdotal infor-
mation from the persons cutting the samples may help rule
such factors in or out. Clearly, if the preceding soft ore results
are retained, they would have to be discounted relative to the
hard ore results.

Continuing with statistical considerations, the general-
ized nonlinear regression packages often provide estimates
of parameter standard errors and of covariance/correlation
matrices, which can be quite informative. Add-ins are
available for Excel (e.g., de Levie 1999), which the chap-
ter author would recommend to the reader. For illustrative
purposes, Tables 6 and 7 present the standard errors for the
three-parameter model and the parameter correlation matrix,
respectively. The approximate 95% confidence limits on the
parameters are approximately 2 times the standard error. For
example, the approximate 95% confidence limits on d50c¢ are
from 132 to 156 um. The value of these standard errors is
just to quantify the effects of data scatter on parameter preci-
sion. While it may be an arcane observation, these confidence
limits need to be used with caution if one wishes to define,
say, a parameter space (i.e., a “rectangular region” defining
expected parameter values). As discussed briefly in the text
that follows, the significant covariance of these parameters
distorts the joint confidence limits.

As is usually the case with nonlinear models, there is
a relatively high degree of correlation in the parameters, as
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Figure 8 Reduced efficiency (partition) curve for the soft
and hard ore balanced data

changing one will almost certainly require a compensating
change in another to maintain a reasonable fit. Consequently,
irregularities in one or two data points can have a deleterious
effect on all parameter estimates. For example, and with refer-
ence to Table 7, if the size data in the very fine range drives
an increase in Rf, one would observe increases in both a and
d50c to compensate. The point to retain is that these param-
eters are not independent, and there is a series of combinations
of these parameters that will give about the same results when
the data are noisy.

To conclude this section, it is good to reflect on the
findings of many researchers working on hydrocyclones.
Corrected partition curves (¢;) can be normalized with size
(d/d50c on the x-axis) to form what is referred to as the
reduced efficiency curve. (The ¢; can be calculated from
experimental data by rearranging Equation 10 and using the
experimental partition factors, p.) For most normal operat-
ing regimes, and with geometrically similar hydrocyclones,
the reduced efficiency (partition) curve retains the same shape
(ot is constant, although d50c and Rf can vary significantly).
The reduced efficiency curves for the experimental data on
both the soft and hard ores are shown in Figure 8.

The common empirical models of the hydrocyclone, as
described in the main body of this chapter, have a series of
correlations that allow one to estimate d50¢ and Rf, based
on geometrical and operating inputs. These correlations then
define the partition curve, which is at the heart of the classifi-
cation process in this predictive mode.

MEASURES OF EFFICIENCY

In the preceding discussion, the parameter o was defined as the
sharpness of separation for the more common corrected parti-
tion curve models of Equations [ 1 and 12. While o represents
an important metric for separation efficiency and is explored
in a little more detail in this section, it should be observed that
Rf is also, in a way, a measure of efficiency. Following the
thinking of the post-classification model in Figure 6, Rf can
be seen as a measure of the fines that have been misplaced
into the underflow stream. Rf'is a complex function of many
operating and design variables, but values in the range of 0.15
to 0.3 are preferred. Nevertheless, values as high as 0.4-0.5
are sometimes observed in practice. In terms of achieving an
efficient separation process, the minimization of Rf'is equally
as important as maximizing c.

Figure 9 The effect of a on the shape of the corrected
partition curve (Equation 11)

For hydrocyclones, Equation 11 o values in the range of
1.5 to 3 are quite common, and as Figure 9 shows, higher val-
ues mean sharper separations. As long as the same ¢; model is
being used, one can compare o.’s to compare separation effi-
ciencies. Theoretically, perfect separation occurs for o = oo,
but in practice, values of 5 or 6 (often seen for coarse vibrating
screens) are near perfect.

A few other efficiency metrics were perhaps more com-
mon in the past, and they are reproduced for convenience. All
are based on a few sizes that are easily extracted from the ¢;
model used in Equation 21. For these sizes for which ¢ =
0.75, hereafter termed d75¢, and ¢ = 0.25, hereafter termed
d25¢.

Imperfection, 1, is defined as

[d75¢ -d25¢]
= (2)(d50¢)

Lower values of I imply sharper separations. Typical val-
ues for hydrocyclones would lie in the range of 0.25 <1< 0.6,
corresponding to 3.1 > « > 1.3. For vibrating screens, these
values would be 0.12 <1<0.2, corresponding to 6.5 > a. > 3.9.

The probable error of separation, or ecart probable
moyen, Ep, is defined as

[d75¢ —d25¢]
Bp="—"rgy (EQ 25)

(EQ 24)

Lower values of Ep imply sharper separations. It is appar-
ent that Ep = (I)(d50¢), which implies that the two will show
essentially identical trends as a function of a. In that regard,
the dimensionless nature of I may make it a better metric for
comparative purposes.

The sharpness index, S, is defined as
e (020

Higher values of SI imply a sharper separation, and per-
fect separation occurs at SI = 1. Typical values for hydrocy-
clones would lie in the range of 0.3 < SI < 0.6, corresponding
to 1.3 < a < 3.1. For vibrating screens, these values would be
0.6 <SI <0.8, corresponding to 3 < a < 6.5.

For illustrative purposes, the SI values were calculated
for the various ¢; curves and are also shown in Figure 9. To
conclude this section, the three preceding metrics were com-
puted for the hydrocyclones treating the soft and hard ores, as
reported in Figure 10. These can be considered typical values.

SI =
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the d,, approximation
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Figure 11 Dry and wet size analysis (with micro-sieving) to
determine the full PSD curve

CHALLENGES WITH VERY FINE SEPARATIONS

In this section, two of the common challenges for very fine
separations are addressed. The first is the measurement of par-
ticle size itself. Depending on the equipment available, one
might be able to use a single device for measuring the par-
ticle size distribution, or PSD (e.g., a laser scattering system).
However, in some cases one is forced to use sieves down to
400 mesh (37 um) or 500 mesh (25 pm), combining both dry
and wet sieving techniques, and then move to a completely
different method such as sedimentation or cyclosizing, or even
laser-based techniques. Changing methods means a change in
the way the particle diameter is estimated, and that can require
some manipulation to get a consistent estimate of the complete
PSD. Herbst and Sepulveda (1985) have presented a meth-
odology for making such an adjustment. For the purposes of
this discussion, the author recommends that when sieves are
employed for the coarser particle sizes, micro-sieving (same
separation principles) be employed for the finer sizes when-
ever possible.
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Figure 13 Extrapolation of the hydrocyclone feed size
distribution using the Austin and Klimpel method

To illustrate, in Figure 11, dry screening was used down
to 270 mesh (53 um), followed by wet screening on the usual
sieves for 400 mesh and 500 mesh, and finally wet micro-sieving
for the very fine sizes (20 pm and 10 pm). In the figure, the dry
and wet screening data are shown separately as solid circles, and
the wet data are then adjusted for the sizing mass balance yield-
ing the full PSD. To show the consistency, a Rosin—Rammler
model (dotted line in Figure 11) was fit to the full size range,
and it is clear that use of dry and wet sieving to very fine sizes
essentially requires no additional manipulations.

The second challenge arises when the particle size analy-
sis does not extend to the finer sizes, that is, where d50c <s,,_,
(the upper limiting size of the pan fraction). This can best be
llustrated by example. The data in Table 8 are from a hydro-
cyclone making quite a fine cut and where the size analysis
work was terminated at 25 um. The geomean size d, is calcu-
lated by assuming the upper limiting size, s, = V2s1.

Figure 12 shows the experimental and modeled partition
curve results for the data of Table 8. The model parameters
are presented in the figure. It is clear that, with the exception
of the point at dy,, = s,_1/3, the partition curve is only well
defined at the coarser sizes. Clearly, the use of this approxi-
mation for dy,,, helps, but the lack of definition of the curve in
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Table 8 Mass balance for fine-cut hydrocyclone

Cyclone Feed Cyclone Overflow Cyclone Underflow
Stream (X) (0) (u)
Relative Solids 100.00 25.76 74.24
Mass Flow, %
% Solids 52.41 29.89 70.96
Frequency, Frequency, Frequency, Geomean Size,
Passing Size, pm % retained % retained % retained pm Partition Factor
3,327 0.06 - 0.08 3,956.5 1.00
2,362 0.20 - 0.26 2,803.3 1.00
1,651 0.19 - 0.26 1,974.8 1.00
1,168 0.37 — 0.50 1,388.7 1.00
833 0.50 - 0.67 986.4 1.00
589 0.94 - 1.27 700.5 1.00
417 1.42 - 1.91 495.6 1.00
295 3.16 - 4.26 350.7 1.00
208 5.09 - 6.86 247.7 1.00
147 8.09 0.54 10.71 174.9 0.98
104 8.61 0.82 1181 123.6 0.98
74 10.55 1.24 13.78 87.7 0.97
53 8.31 1.94 10.52 62.6 0.94
44 4.78 1.94 577 48.3 0.90
37 3.59 1.93 4.17 40.3 0.86
25 6.59 4.94 7.16 30.4 0.81
Pan 37.56 86.66 20.51 8.3 0.41
Checks 100.00 100.00 100.00 o -
hydrocyclone feed size distribution from the original s, | of
1.0 PR A i 25 um to include the following sizes: 17.7, 12.5, 8.8, 6.3, and
*+* Model o 4.4, all in micrometers.
0.8 a=1.33 [ 3
d50c=220] s P :
5 v=|¥] (EQ27)
g 0.6
& ﬂ_ Ao ~ 501 /3 where
2 04 e e y = cumulative fraction passing
5 s e G o - i passing size
0.2 K = size modulus
p = distribution modulus
0.0 T T T i z . . .
1 10 100 1,000 10,000 Figure 13 illustrates this process, showing the region over
Characteristic Size, pm which the model parameters for Equation 27 are estimated and
the subsequent results of the extrapolation.

Figure 14 Partition curve for the fine-cut hydrocyclone using
the Austin and Kimpel method

this region is a concern in terms of the quality of the parameter
estimates.

Austin and Klimpel (1981) developed a clever scheme to
analyze classifier data, and this includes the information car-
ried by the pan fraction results. The authors use this method,
although only for the pan fraction when ¢50,. is less than §
as explained below.

Austin and Klimpel noted that the finer size regions of the
hydrocyclone feed PSD can usually be well modeled using the
Gates—Gaudin—Schuhmann equation, given by Equation 27,
By extending the sizes into the very fine regions (say, down
to 5 um or smaller), one can estimate the cumulative fraction
passing these finer sizes and, hence, the frequency retained on
size data. In this case, a v2 series was selected to extend the

n—1»

If it is assumed that m new sizes have been added (here,
m = 5), then the solution for the pan fraction partition factor is
given in Equation 28:

(EQ 28)

Table 9 summarizes the calculations for the balanced data
in Table 8, and Figure 14 shows the experimental and modeled
partition data. Comparing the parameter values in Figures 12
and 14, it would seem that the approximation of dyq, ~ 5,,1/3
gives reasonable results. (Note that the new pan characteristic
size in Table 9 is also estimated as s,,.,, /3.)

Based on the Austin and Klimpel method mentioned
previously, one can explain the approximation for the
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Table 9 Results of applying the Austin and Klimpel technique

Passing Size, Geomean Size, Cumulative Frequency, Extended Model Experimental Model
pm pm % Passing % retained Partition Partition Partition
3,327 3,956 99.94 0.06 1.00 1.00 1.00
2,362 2,803 99.75 0.20 1.00 1.00 1.00
1,651 1,975 99.55 0.19 1.00 1.00 1.00
1,168 1,389 99.18 0.37 1.00 1.00 1.00
833 986 98.68 0.50 1.00 1.00 1.00
589 700 97.74 0.94 1.00 1.00 1.00
417 496 96.32 1.42 1.00 1.00 1.00
295 351 93.16 3.16 1.00 1.00 1.00
208 248 88.07 5.09 1.00 1.00 1.00
147 175 79.98 8.09 1.00 0.98 1.00
104 124 71.37 8.61 1.00 0.98 1.00
74 88 60.83 10.55 0.99 0.97 0.99
53 63 52,52 8.31 0.96 0.94 0.96
44 48 47.74 4.78 0.21 0.90 0.91
37 40 44,15 3.59 0.86 0.86 0.86
25 30 37.56 6.59 0.77 0.81 0.77
17.7 21.0 31.69 5.86 0.65 0.41 0.45
12.5 14.9 27.05 4.64 0.56 Model Fit
8.8 10.5 23.09 3.96 0.49 Rf 0.33
6.3 7.4 19.71 3.38 0.44 m 1.33
4.4 53 16.82 2.89 0.40 d50c 22.0
New pan 1.5 16.82 0.35 RSS 4.95E-03
Table 10 Air clossifier partition data - N
Geomean Size, Experimental Finch Austin et al.
pm Partition Factors ~ Model Results Model Results 0.8 -
210.49 1.00 1.00 1.00 ]
148.74 1.00 1.00 1.00 E 0.6 -
104.88 1.00 1.00 1.00 .§
74.46 1.00 1.00 1.00 5 041
52.65 0.96 0.97 0.97 ®
37.23 077 077 0.77 il
25132 0.50 0.50 0.52 -
18.58 0.41 0.39 0.38 ; & o 00
13.14 0.30 0.35 0.33 Geomean Size, pm
9.23 0.36 0.36 0.35
6.53 0.41 0.37 0.40 Finch Parameters
4.69 0.43 0.43 0.44 B e —_—JFIi(r:Scilme':/l\odel
1.33 0.46 0.46 0.46 d50c=19.7
Data adapted from Austin et al. 1984 =203

characteristic size of the pan fraction, that is, dye, ~ 5,1/3,
introduced earlier. The frequency form of the Gates—Gaudin—
Schuhmann function in Equation 27 is given by Equation 29:

@ =[x o)

The mass mean size for the pan fraction can then be estimated

as
,[ B
Sa-1 1+
I g Vds B

(EQ 29)

Sn-1

o svas

e (EQ 30)

Figure 15 Partition curve data for the air classifier showing
the Finch model parameters

Since the B values in the fine size regions of the hydrocyclone
feed PSD often lie in the range of 0.45 to 0.55, assuming an
average value of 0.5 yields the approximation dp,, ~ 5,,_1/3.

As a rule of thumb, as long as the experimental partition
factor for the size class n (p,) is, say, less than 0.45 or so, using
the simple approximation for d,,,, is acceptable. For values of
p, greater than this level, one should strongly consider apply-
ing the Austin and Kimpel method, either as outlined here or
the full method described in the reference article.
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Figure 16 Austin et al. (1984) conceptual model for the air
classifier
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Figure 17 Partition curve data for the air classifier showing
the Austin et al. (1984) model parameters

UNUSUAL PARTITION CURVES

The preceding discussion focused more on the usual sigmoidal
partition curve; however, in some instances the shape of the
experimental partition curve is not strictly sigmoidal. Finch
(1983) was one of the first to publish on partition curve inflec-
tions in the fines sizes, and over the years many other authors
have presented and explained similar findings. One of the best
review/research papers was recently published by Eisele et al.
(2013), and anyone interested in this topic is strongly encour-
aged to read this work.

For the purposes of this chapter, where the focus is on
the partition curve for a hydrocyclone, there are two phenom-
ena that can alter the shape of the more usual partition curve:
(1) fines entrainment in the underflow stream (beyond the
effect of Rf) and (2) multicomponent (heterogeneous) ores.
Of the two, from an operational perspective, the second item
is probably more important.

Fines Entrainment

The “fishhook™ phenomenon usually occurs in the finer size
ranges, say less than 50 pm and, more often, less than 20 pm.
(The term fishhook derives from an unexpected upturn in the
partition curve in the fine size region.) Explanations for this
occurrence can involve flocculation or agglomeration, bound-
ary layer entrainment, wake entrainment, dense medium
effects, density effects, settling regimens, or the propagation
of experimental errors (see Eisele et al. 2013 for more detail).

The phenomenon is illustrated here by borrowing a data set
(Austin et al. 1984) from a sampling experiment around an air
classifier, as shown in the first two columns of Table 10.

Finch’s approach to describe the partition curve was to
reformulate Equation 21 as shown in Equation 31, borrow-
ing from the phenomena of entrainment observed in flotation
froths:

(EQ 31)

where d;; equals the size at which fines entrainment begins.

In this case, the first term is calculated only for the cases
where d; < dy; otherwise, it is taken to be 0. Figure 15 shows
the raw data and the Finch model fit, and the fishhook is quite
apparent.

Users of JKSimMet will be familiar with the Whiten
approach (described in Nageswararao et al. 2004) to account
for a fishhook shape in the partition curve data. This four-
parameter model is a little more involved, so it is not included
here, although the results are shown in Figure 15 for com-
parative purposes. Nageswararao et al. (2004) have observed
that in many cases—including the fishhook parameter in the
JKSimMet model—the overall fit was improved, but statisti-
cal tests were not applied to assess whether this was simply
the effect of additional parameters or whether the partition
curve required it.

In their work on air classifiers, Austin et al. (1984) devel-
oped a conceptual model based on mechanisms at work in this
device, and this is shown in Figure 16. The model that arises
from this formulation is given by Equation 32, and the fit is
presented in Figure 17.

% 5 Rf[dud;ud!]+[[ _Ols(tl’(zst)c)“]

~ Ppi :
PE= T =T =pa)(T =] S
where
ppi = primary separation partition curve, same form as
Equation 21
psi = secondary separation partition curve, same form as
Equation 21

Clearly, more complex partition curve shapes call for
more complex models. In this case, Finch uses four param-
eters and Austin et al. (1984) use six parameters. Based on
Partial F testing, there is no statistical justification to go with
the more complex model of Austin et al.although conceptu-
ally it has some merit. For parameters to be useful metrics in
assessing performance, parsimony is key (i.e., two or three,
and possibly four, parameters are “manageable”). Beyond
that, one might just as well use generic functional forms (e.g.,
high-order polynomials or splines) to connect the points.

Multicomponent Ores
For purposes of this discussion, the author considers multi-
component ores to include significant quantities of minerals
with quite different specific gravities. Since hydrocyclone
classification involves settling velocities, particle mass is
important, and that depends on both size and specific gravity
(sg). A particularly good example of this in the mining indus-
try is iron ore processing, where in many cases the ores can
be considered to consist of silica (sg = 2.65) and magnetite or
hematite (sg =4.9-5.2).

Eisele et al. (2013) have shown how plateaus or humps
are formed in partition curves when synthetic mixtures of
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Figure 19 Partition curves for two magnetite plants from experimental data

silica and magnetite are mixed and fed to a hydrocyclone.
They have also shown similar partition curve shapes from
plant sampling campaigns in a magnetite concentrator.

Not all multicomponent ores give rise to unusual partition
curve shapes. A good example of this from the mining indus-
try is a hydrocyclone treating coal. In this case, there 1s essen-
tially a continuous range of specific gravity components in the
solids, and the net effect is that a reasonable overall partition
curve shape, albeit with a low « value, is derived. However,
if one submits the cyclone products to sink/float analyses to
separate the specific gravity classes by size, a clearer picture
emerges. Figure 18 illustrates this situation.

It is clear in Figure 18 that the cut size (¢50¢) is depen-
dent on the specific gravity and the functional form follows
from the settling theory as shown in Equation 33. Minerals
with higher specific gravities have finer cut sizes:

508 6. ——

EQ 33
[po- 1T Q3

where
p, = specific gravity of the solid component
k = exponent 0.5 for Stokesian conditions and 1.0 for
Newtonian conditions—experimental values vary
from theory (e.g., for the data in Figure 16, & =
1.13 [Flintoff et al. 1987])

The behavior of the curves in the very fine sizes may seem a
little odd, as they do not appear to asymptotically approach Rf,
the lighter fractions showing lower values than the fractional
bypass of water. Here, this is likely the result of dense medium
separation effects in the neighborhood of the apex, something
that is exploited in automedium hydrocyclones for fine coal
preparation applications.

Coming back to the two-component iron ore system,
Figure 19 shows the results for two different magnetite plants,
where the hydrocyclones are producing final comminution
circuit product, which, in turn, will get a final cleaning by
magnetic separation. The humps or plateaus are very clear in

Copyright © 2019 Society for Mining, Metallurgy, and Exploration. All rights reserved.



4.6 | Partition Curves 653

6 0.5
e
14

5 4 ° Ly ® ,r L 04 _
L7 c
£ 4 ¢ E
] w
(% ! .. 03 5
7 | R . ®eee z
3 02 @
& 24 o
63 % 100 pm 9

1 4| @ Specific Gravity 0.1

--- d50c Adjustment
0 » i 0.0
1 10 100 1,000
Characteristic Size, pm

Figure 20 Specific gravity and d50¢ adjustment factors as a
function of size for plant X
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Figure 21 Estimated and actual overall partition curve for
plant X

this case, and as Eisele et al. (2013) point out, these are exac-
erbated by the concentration of fine liberated magnetite in the
hydrocyclone underflow stream, which inevitably returns to
the hydrocyclone feed after passing through a ball mill.

In both cases, one can see that a significant portion of
a middlings size class (~45% Fe) reports to the hydrocy-
clone overflow, and since magnetic separators are designed
to recover all particles that exhibit magnetic properties, this
material contaminates the final concentrate and can contribute
to a lower grade. This is one of the reasons that fine screens
are seeing more use in these circuits (e.g., scavenging the
coarse lower-grade material from the hydrocyclone overflow
and directing it back to the ball mill to get to premium product
grade levels of 67%—68% Fe or higher).

Understanding the reasons for the plateau region in
Figure 19 is a little more challenging than making inferences
from synthetic mixtures. This is more like the coal problem,
although because of prior magnetic separation steps, much of
the free silica has been removed, so it is not a natural feed in
that sense.

For plant X, there were some liberation data on the
ore at the time the sampling campaign was completed, and
in all cases, the size fractions were assayed for %Fe. These
liberation data, combined with the preceding information,
allowed for decomposition of the hydrocyclone feed into

three components: free magnetite, locked magnetite, and free
silica. In the case of the locked particles, the specific grav-
ity varies with the iron content, which varies as a function
of size. Figure 20 shows the estimated variation of particle
specific gravity with size. In this case, k£ in Equation 33 was
estimated as 1.03, and the ¢50c¢ adjustment from the equation
is also shown on the figure. In the range of the plateau, one can
clearly see that while size is increasing (which should increase
the partition factor), the density is dropping, which has the
effect of translating the actual partition curve to the right and
driving the partition factor down. The net result is that dur-
ing this transient in the average particle density, the overall
partition curve will show some sort of inflection, and those
displayed in Figure 19 are typical.

Using a model of the form given by Equation 21, with
the specific gravity correction of Equation 33, the overall
predicted partition curve was computed based on individual
component behavior. These results are shown in Figure 21,
and given the initial assumptions, they seem quite reasonable.
Note that the free magnetite and free silica curves are included
for reference.

It may be possible to use simpler modeling approaches
to characterize the curve, but for meaningful parameter esti-
mation and understanding of where the inflection forms and
its extent, much more information is required. Incorporating
this kind of structure into process simulation packages like
JKSimMet is in progress (e.g., Narasimha et al. 2012).

CONCLUSIONS

The partition curve is ubiquitous in characterizing classifica-
tion processes based on the physical attributes of the particles.
They serve as a diagnostic tool for assessing the performance
of these units through parameter estimation and possible com-
parison with other parameter data. In the case of some unit
operations, like the hydrocyclone and screens, they lie at the
heart of more comprehensive empirical models, which are
embedded in simulation software, and are useful in process
analysis, design, and optimization.

Despite their apparent mathematical simplicity, the work
required to get a good estimate of a partition curve 1s time-
consuming, and every effort must be made to comply with the
best practices for process surveys. The raw data can be used
in that state, but it is better to massage it with mass balance
software before getting into the modeling work. In porphyry
copper (not massive sulfides) and gold ores, it is common to
be able to use two- or three-parameter models. Statistical com-
parison can be used to select the best model and, in itself,
can be another useful diagnostic around data quality. In the
case of multicomponent ores (e.g., iron ore, coal, or massive
sulfide deposits), specific gravity variation can complicate the
partition curve analysis, although work on multicomponent
simulation packages should make this easier in the future. The
fishhook phenomenon that is visible in some partition curves
can usually be handled by adding a single parameter, although
a mechanistic interpretation of this can sometimes be difficult.
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